A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
int solution(int A[], int N);
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
int solution(vector<int> &A);
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
int solution(vector<int> &A);
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
int solution(List<int> A);
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
func Solution(A []int) int
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
function solution(A);
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
fun solution(A: IntArray): Int
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
function solution(A)
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
Note: All arrays in this task are zero-indexed, unlike the common Lua convention. You can use #A to get the length of the array A.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
int solution(NSMutableArray *A);
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
function solution(A: array of longint; N: longint): longint;
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
function solution($A);
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
sub solution { my (@A) = @_; ... }
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
def solution(A)
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
def solution(a)
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
object Solution { def solution(a: Array[Int]): Int }
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
public func solution(_ A : inout [Int]) -> Int
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
function solution(A: number[]): number;
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.
A non-empty array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.
Array A contains only 0s and/or 1s:
- 0 represents a car traveling east,
- 1 represents a car traveling west.
The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.
For example, consider array A such that:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).
Write a function:
Private Function solution(A As Integer()) As Integer
that, given a non-empty array A of N integers, returns the number of pairs of passing cars.
The function should return −1 if the number of pairs of passing cars exceeds 1,000,000,000.
For example, given:
A[0] = 0 A[1] = 1 A[2] = 0 A[3] = 1 A[4] = 1the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer that can have one of the following values: 0, 1.