A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Assume that the following declarations are given:
struct Results { int * A; int M; // Length of the array };
Write a function:
struct Results solution(int N, int P[], int Q[], int M);
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
vector<int> solution(int N, vector<int> &P, vector<int> &Q);
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
vector<int> solution(int N, vector<int> &P, vector<int> &Q);
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
class Solution { public int[] solution(int N, int[] P, int[] Q); }
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
List<int> solution(int N, List<int> P, List<int> Q);
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
func Solution(N int, P []int, Q []int) []int
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
class Solution { public int[] solution(int N, int[] P, int[] Q); }
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
class Solution { public int[] solution(int N, int[] P, int[] Q); }
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
function solution(N, P, Q);
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
fun solution(N: Int, P: IntArray, Q: IntArray): IntArray
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
function solution(N, P, Q)
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
Note: All arrays in this task are zero-indexed, unlike the common Lua convention. You can use #A to get the length of the array A.
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
NSMutableArray * solution(int N, NSMutableArray *P, NSMutableArray *Q);
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Assume that the following declarations are given:
Results = record A : array of longint; M : longint; {Length of the array} end;
Write a function:
function solution(N: longint; P: array of longint; Q: array of longint; M: longint): Results;
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
function solution($N, $P, $Q);
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
sub solution { my ($N, $P, $Q) = @_; my @P = @$P; my @Q = @$Q; ... }
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
def solution(N, P, Q)
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
def solution(n, p, q)
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
object Solution { def solution(n: Int, p: Array[Int], q: Array[Int]): Array[Int] }
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
public func solution(_ N : Int, _ P : inout [Int], _ Q : inout [Int]) -> [Int]
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
function solution(N: number, P: number[], Q: number[]): number[];
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
For example, consider an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20The number of semiprimes within each of these ranges is as follows:
- (1, 26) is 10,
- (4, 10) is 4,
- (16, 20) is 0.
Write a function:
Private Function solution(N As Integer, P As Integer(), Q As Integer()) As Integer()
that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.
For example, given an integer N = 26 and arrays P, Q such that:
P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20the function should return the values [10, 4, 0], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..50,000];
- M is an integer within the range [1..30,000];
- each element of arrays P and Q is an integer within the range [1..N];
- P[i] ≤ Q[i].