Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
int solution(int N, int M);
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
int solution(int N, int M);
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
int solution(int N, int M);
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
class Solution { public int solution(int N, int M); }
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
int solution(int N, int M);
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
func Solution(N int, M int) int
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
class Solution { public int solution(int N, int M); }
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
class Solution { public int solution(int N, int M); }
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
function solution(N, M);
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
fun solution(N: Int, M: Int): Int
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
function solution(N, M)
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
int solution(int N, int M);
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
function solution(N: longint; M: longint): longint;
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
function solution($N, $M);
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
sub solution { my ($N, $M) = @_; ... }
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
def solution(N, M)
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
def solution(n, m)
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
object Solution { def solution(n: Int, m: Int): Int }
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
public func solution(_ N : Int, _ M : Int) -> Int
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
function solution(N: number, M: number): number;
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].
Two positive integers N and M are given. Integer N represents the number of chocolates arranged in a circle, numbered from 0 to N − 1.
You start to eat the chocolates. After eating a chocolate you leave only a wrapper.
You begin with eating chocolate number 0. Then you omit the next M − 1 chocolates or wrappers on the circle, and eat the following one.
More precisely, if you ate chocolate number X, then you will next eat the chocolate with number (X + M) modulo N (remainder of division).
You stop eating when you encounter an empty wrapper.
For example, given integers N = 10 and M = 4. You will eat the following chocolates: 0, 4, 8, 2, 6.
The goal is to count the number of chocolates that you will eat, following the above rules.
Write a function:
Private Function solution(N As Integer, M As Integer) As Integer
that, given two positive integers N and M, returns the number of chocolates that you will eat.
For example, given integers N = 10 and M = 4. the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..1,000,000,000].