对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
int solution(int A[], int N);
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
int solution(vector<int> &A);
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
int solution(vector<int> &A);
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
class Solution { public int solution(int[] A); }
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
int solution(List<int> A);
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
func Solution(A []int) int
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
class Solution { public int solution(int[] A); }
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
class Solution { public int solution(int[] A); }
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
function solution(A);
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
fun solution(A: IntArray): Int
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
function solution(A)
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
int solution(NSMutableArray *A);
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
function solution(A: array of longint; N: longint): longint;
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
function solution($A);
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
sub solution { my (@A) = @_; ... }
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
def solution(A)
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
def solution(a)
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
object Solution { def solution(a: Array[Int]): Int }
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
public func solution(_ A : inout [Int]) -> Int
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
function solution(A: number[]): number;
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
对于一个长度为 N 的整型数组, 如果存在三个元素 i,j,k i ≠ j ≠ k, 0 ≤ i,j,k < N) 满足如下条件:
- A[i] + A[j] > A[k],
- A[j] + A[k] > A[i],
- A[k] + A[i] > A[j].
实现如下一个函数:
Private Function solution(A As Integer()) As Integer
则返回1, 否则返回0.
对于数组:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20函数应该返回 1, 因为坐标为i=0, j=2, k=4的元素满足所有的判定条件(例如: A[2] + A[4] > A[0]). 对于数组:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1函数应该返回 0.
假定:
- N 是 [0..100,000] 内的 整数;
- 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
int solution(int A[], int N);
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
int solution(vector<int> &A);
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
int solution(vector<int> &A);
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
int solution(List<int> A);
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
func Solution(A []int) int
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
function solution(A);
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
fun solution(A: IntArray): Int
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
function solution(A)
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
Note: All arrays in this task are zero-indexed, unlike the common Lua convention. You can use #A to get the length of the array A.
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
int solution(NSMutableArray *A);
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
function solution(A: array of longint; N: longint): longint;
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
function solution($A);
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
sub solution { my (@A) = @_; ... }
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
def solution(A)
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
def solution(a)
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
object Solution { def solution(a: Array[Int]): Int }
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
public func solution(_ A : inout [Int]) -> Int
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
function solution(A: number[]): number;
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Write a function:
Private Function solution(A As Integer()) As Integer
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].