For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
int solution(int A[], int N);
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
int solution(vector<int> &A);
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
int solution(vector<int> &A);
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
int solution(List<int> A);
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
func Solution(A []int) int
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
function solution(A);
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
fun solution(A: IntArray): Int
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
function solution(A)
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
int solution(NSMutableArray *A);
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
function solution(A: array of longint; N: longint): longint;
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
function solution($A);
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
sub solution { my (@A) = @_; ... }
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
def solution(A)
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
def solution(a)
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
object Solution { def solution(a: Array[Int]): Int }
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
public func solution(_ A : inout [Int]) -> Int
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
function solution(A: number[]): number;
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
Private Function solution(A As Integer()) As Integer
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].