An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
int solution(int A[], int N);
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
int solution(vector<int> &A);
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
int solution(vector<int> &A);
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
int solution(List<int> A);
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
func Solution(A []int) int
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
function solution(A);
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
fun solution(A: IntArray): Int
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
function solution(A)
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
Note: All arrays in this task are zero-indexed, unlike the common Lua convention. You can use #A to get the length of the array A.
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
int solution(NSMutableArray *A);
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
function solution(A: array of longint; N: longint): longint;
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
function solution($A);
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
sub solution { my (@A) = @_; ... }
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
def solution(A)
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
def solution(a)
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
object Solution { def solution(a: Array[Int]): Int }
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
public func solution(_ A : inout [Int]) -> Int
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
function solution(A: number[]): number;
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
Private Function solution(A As Integer()) As Integer
that, given an array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 12the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].