
Wire Burnouts

Let us see how the Ψ (Psi) challenge can be solved. You can still give it a try, but no certificate
will be granted.

In this task, there is a grid of wires through which an electric current flows between
the lower-left and upper-right corners. The wires burn out sequentially in some order. The
question is: how many wires must burn out to cause the current to stop flowing?

Checking whether the two corners are connected is a standard graph problem, and there
are standard algorithms for checking graph connectivity: for example, DFS and BFS. Each
of them requires O(N2) time, where N is the size of the grid. But there are up to 2N(N − 1)
wires that can burn out, and equally as many moments at which we should check whether
the two corners are still connected. So the overall time complexity of such a naive solution is
O(N4). Here is an implementation of such a solution in Python:

1: Repetitive graph search solution — O(N4)

1 def check_connections(horizontal, vertical):
2 N = len (horizontal)
3 visited = [[False] * N for j in xrange(N)]
4

5 def dfs(i, j):
6 if (not visited[i][j]):
7 visited[i][j] = True
8 if vertical[i][j]:
9 dfs(i, j+1)

10 if horizontal[i][j]:
11 dfs(i+1, j)
12 if (i > 0 and horizontal[i-1][j]):
13 dfs(i-1, j)
14 if (j > 0 and vertical[i][j-1]):
15 dfs(i, j-1)
16

17 dfs(0, 0)
18 return visited[N-1][N-1]
19

20 def wire_burnouts(N, A, B, C):
21 vertical = [[True] * N for j in xrange(N)]
22 horizontal = [[True] * N for j in xrange(N)]
23 for i in xrange(N):
24 vertical[i][N-1] = False
25 horizontal[N-1][i] = False
26 for t in xrange(len(A)):
27 if C[t] == 0:

c© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1

http://codility.com/demo/take-sample-test/psi2012
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search


28 vertical[A[t]][B[t]] = False
29 else:
30 horizontal[A[t]][B[t]] = False
31 if not check_connections(horizontal, vertical):
32 return t+1
33 return -1

Unfortunately, such a solution fails on larger tests due to stack overflow. Also, there are
faster solutions.

Firstly, we don’t have to check all possible moments in time: once the current stops
flowing it never starts flowing again. Hence, we can use a bisection to find the moment when
the current stops flowing. Bisection requires us to check connectivity at O(log N) different
moments in time, and each such check takes O(N2) time, so the overall time complexity
is O(N2 log N) time. Secondly, instead of using recursion, we can implement DFS using an
explicit stack.

2: Bisection and graph searching — O(N2 log N)

1 def check_connections(horizontal, vertical):
2 N = len (horizontal)
3 visited = [[False] * N for j in xrange(N)]
4 stack = [(0,0)] * (2 * N * N)
5 sp = 1
6

7 while sp > 0:
8 sp -= 1
9 (i,j) = stack[sp]

10 if (not visited[i][j]):
11 visited[i][j] = True
12 if vertical[i][j]:
13 stack[sp] = (i,j+1)
14 sp += 1
15 if horizontal[i][j]:
16 stack[sp] = (i+1,j)
17 sp += 1
18 if (i > 0 and horizontal[i-1][j]):
19 stack[sp] = (i-1,j)
20 sp += 1
21 if (j > 0 and vertical[i][j-1]):
22 stack[sp] = (i,j-1)
23 sp += 1
24

25 return visited[N-1][N-1]
26

27 def wire_burnouts(N, A, B, C):
28

29 def burn_wires(t):
30 horizontal = [[True] * N for j in xrange(N)]
31 vertical = [[True] * N for j in xrange(N)]
32 for i in xrange(N):
33 vertical[i][N-1] = False
34 horizontal[N-1][i] = False
35 for i in xrange(t):
36 if C[i] == 0:
37 vertical[A[i]][B[i]] = False
38 else:
39 horizontal[A[i]][B[i]] = False
40 return check_connections(horizontal, vertical)

2



41

42 def bisection(l, p):
43 # Search for the first moment without a connection
44 if l == p:
45 burn_wires(p)
46 if burn_wires(p):
47 return -1
48 else:
49 return l
50 else:
51 m = (l+p)/2
52 if burn_wires(m):
53 return bisection(m+1, p)
54 else:
55 return bisection(l, m)
56

57 return bisection(0, len(A))

Even so, this is still not the best possible solution. Instead of burning the wires out, we can
reverse time, keep adding missing wires and check when the two corners are connected. For
this approach the best data structure to use is a find–union tree. This is suitable for storing
information about a set of elements (nodes of the grid) grouped into disjoint subsets (here,
connected components). Using find–union trees, we can quickly check whether two elements
are connected (find) or add a new wire (union). The amortized time cost of operations on
such trees is O(log∗ N). (log∗ is the iterated logarithm, the number of times one has to iterate
the log2 function in order to obtain a number not greater than 1. In practice, its value doesn’t
exceed 5 and can be treated as constant.) Hence, the overall time complexity of the solution
is O(N2 log∗ N). Here is an implementation of such a solution:

3: Model solution — O(N2 log∗ N)

1 def find((a,b)):
2 global vertices, rank
3

4 (c,d) = (a,b)
5 while vertices[a][b] != (a,b):
6 (a,b) = vertices[a][b]
7 while vertices[c][d] != (a,b):
8 (e,f) = vertices[c][d]
9 vertices[c][d] = (a,b)

10 (c,d) = (e,f)
11 return (a,b)
12

13 def union((a,b), (c,d)):
14 global vertices, rank
15 (a,b) = find((a,b))
16 (c,d) = find((c,d))
17 if rank[a][b] < rank[c][d]:
18 vertices[a][b] = vertices[c][d]
19 else:
20 vertices[c][d] = vertices[a][b]
21 if rank[a][b] == rank[c][d]:
22 rank[c][d] += 1
23

24 def wire_burnouts(N, A, B, C):
25 global vertices, rank
26 M = len(A)
27

3

http://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://en.wikipedia.org/wiki/Amortized_analysis
http://en.wikipedia.org/wiki/Log*


28 # Find-union data-structure
29 vertices = [[(x,y) for y in xrange(N)] for x in xrange(N)]
30 rank = [[0] * N] * N
31

32 # Edges left at the end
33 v_edges = [[True for y in xrange(N-1)] for x in xrange(N)]
34 h_edges = [[True for y in xrange(N)] for x in xrange(N-1)]
35 for i in xrange(M):
36 if C[i] == 0:
37 v_edges[A[i]][B[i]] = False
38 else:
39 h_edges[A[i]][B[i]] = False
40

41 # Merge vertices connected at the end
42 for i in xrange(N):
43 for j in xrange(N):
44 if i < N-1 and h_edges[i][j]:
45 union((i,j), (i+1,j))
46 if j < N-1 and v_edges[i][j]:
47 union((i,j), (i,j+1))
48

49 if find((0,0)) == find((N-1,N-1)):
50 return -1
51

52 # Simulate wires burning out, in a reversed order
53 for i in xrange(M-1, -1, -1):
54 if C[i] == 0:
55 union((A[i],B[i]), (A[i],B[i]+1))
56 else:
57 union((A[i],B[i]), (A[i]+1,B[i]))
58 if find((0,0)) == find((N-1,N-1)):
59 return i+1

4


