
Torus Lot

Another month has passed and it is time to show how the previous Codility challenge, code-
named T (Tau), can be solved. You can still give it a try, but no certificate will be granted.

This problem is a variant of a problem posed by J. Bentley in his Programming Pearls.
The original problem was to find, in a given matrix, a rectangular region with a maximal
sum of elements. We will show how this original problem can be solved, and then we will
extend the solution to the challenge problem. Expected time complexity of the solution is
O(M3 + N3), although a faster solution is known (see H. Tamaki and T. Tokuyama, 2000).

Let C be the given matrix of M×N integers. There are O(N2 ·M2) rectangular fragments
of the matrix. Moreover, a na ive way to calculate the elements in the rectangle requires
O(N · M) time. To obtain the desired time complexity we have to reduce the number of
rectangles considered, and compute the sum of elements in a rectangle more quickly.

First, let us focus on the latter problem. We can compute the sum of elements in a
given rectangle in constant time, after O(N ·M)-time pre-processing. The idea is to compute
another (M + 1)× (N + 1) matrix sum, such that:

sum[x][y] =
x−1∑
i=0

y−1∑
j=0

C[i][j]

Then, the sum of elements in C[i1..i2][j1..j2] equals:

sum[i2 + 1][j2 + 1]− sum[i1][j2 + 1]− sum[i2 + 1][j1] + sum[i1][j1]

For the time being, let us fix the indices 0 ¬ i1 ¬ i2 < M . How can we find the maximal-
sum rectangular submatrix C[i1..i2][j1..j2]? Think about a one-dimensional array C ′[j] =∑i2

i=i1
C[i][j]. The sum of elements in C[i1..i2][j1..j2] is equal to the sum of elements in

C ′[j1..j2]. In this way, the problem reduces to another problem posed by Bentley: that of
finding a maximal-sum contiguous fragment of a one-dimensional array. What is interesting
is that this problem can be solved in O(N) time. So, by solving this one-dimensional problem
for all possible O(M2) pairs of indices i1 and i2 we obtain an O(M2 ·N) time solution of the
two-dimensional problem posed by Bentley.

Now let us deal with the one-dimensional problem. How can we find the maximal-sum
contiguous fragment C ′[j1..j2] of array C ′? Let us define array sum′ as follows: sum′[j] =
sum[i2 + 1][j]− sum[i1][j]. The sum of elements in C ′[j1..j2] equals sum′[j2 + 1]− sum′[j1].
If we fix j2, what then is the optimal value of j1? Clearly, it is an index such that 0 ¬ j1 ¬ j2
and sum′[j1] is minimal. So, to find the optimal values of j1 and j2, it is sufficient to scan all
possible values sum′[j2], keeping track of the minimum value sum′[j1] found so far.

After solving the two-dimensional problem posed by Bentley, it is time to see how to
extend the solution for the certificate. Each rectangular submatrix corresponds to not one
but four rectangles on a torus. In the following figure they are numbered from 1 to 4.

c© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1

http://codility.com/demo/take-sample-test/tau2012
http://www.cs.bell-labs.com/cm/cs/pearls/
http://dl.acm.org/citation.cfm?id=314823


4 3 4

2 1 2

4 3 4

The solution presented so far finds the maximal-sum rectangle of type 1. To find the
maximal-sum rectangle of type 2 for given indices i1 and i2, it is enough to find the minimal-
sum rectangle of type 1. To find the maximal-sum rectangles of type 3 or 4, one should use
the following array sum′ instead: sum′[j] = sum[M ][j]− sum[i2 + 1][j] + sum[i1][j].

The overall time complexity of the presented solution is O(M2 ·N). We can optimize it
slightly, transposing the input matrix if M > N . This way, we obtain a solution running in
O(min(M, N)3) time.

Here is an implementation of the presented solution in Python. Arrays C ′ and sum′ are
not defined explicitly; equivalent expressions referring to the array sum are used instead.

1: Model solution — O(min(M, N)3)

1 def torus_lot(C):
2 M = len(C)
3 N = len(C[0])
4

5 if M > N:
6 # Transpose C
7 C1 = [([0] * M)] * N
8 for j in range(N):
9 C1[j] = C1[j][:]

10 for i in range(M):
11 C1[j][i] = C[i][j]
12 C = C1
13 M = len(C)
14 N = len(C[0])
15

16 # sum[i][j] = profit of a rectangle [0..i-1]x[0..j-1]
17 sum = [([0] * (N+1))] * (M+1)
18 for i in range(1, M+1):
19 sum[i] = sum[0][:]
20 for j in range(1, N+1):
21 sum[i][j] = sum[i-1][j] + sum[i][j-1] - sum[i-1][j

-1] + C[i-1][j-1]
22

23 Res = 0 # Maximum profit of a rectangle
24

25 for i1 in xrange(M):
26 for i2 in xrange(i1+1, M+1):
27 Min1 = 0 # Minimum profit of a rectangle [i1..i2

-1]x[0..j-1]
28 MinJ1 = 0 # Maximum such j
29 MaxP1 = 0 # Maximum profit of a rectangle [i1..i2

-1]x[j’..j-1]
30

31 Max1 = 0 # Maximum profit of a rectangle [i1..i2
-1]x[0..j-1]

32 MaxJ1 = 0 # Minimum such j

2



33 MinC1 = 0 # Minimum profit of a rectangle [i1..i2
-1]x[j’..j-1]

34

35 Min2 = 0 # Minimum profit of a rectangle [0..i1-1,
i2..M-1]x[0..j-1]

36 MinJ2 = 0 # Maximum such j
37 MaxP2 = 0 # Maximum profit of a rectangle [0..i1-1,

i2..M-1]x[j’..j-1]
38

39 Max2 = 0 # Maximum profit of a rectangle [0..i1-1,
i2..M-1]x[0..j-1]

40 MaxJ2 = 0 # Minimum such j
41 MinC2 = 0 # Minimum profit of a rectangle [0..i1-1,

i2..M-1]x[j’..j-1]
42

43 for j in xrange(1,N+1):
44 Profit1 = sum[i2][j] - sum[i1][j]
45 if Profit1 <= Min1:
46 Min1 = Profit1
47 MinJ1 = j
48 if (Profit1 - Min1 > MaxP1):
49 MaxP1 = Profit1 - Min1
50

51 if Profit1 > Max1:
52 Max1 = Profit1
53 MaxJ1 = j
54 if (Profit1 - Max1 < MinC1):
55 MinC1 = Profit1 - Max1
56

57 Profit2 = sum[M][j] - Profit1
58 if Profit2 <= Min2:
59 Min2 = Profit2
60 MinJ2 = j
61 if (Profit2 - Min2 > MaxP2):
62 MaxP2 = Profit2 - Min2
63

64 if Profit2 > Max2:
65 Max2 = Profit2
66 MaxJ2 = j
67 if (Profit2 - Max2 < MinC2):
68 MinC2 = Profit2 - Max2
69

70 Res = max(Res, MaxP1, MaxP2, Profit1 - MinC1,
Profit2 - MinC2)

71

72 return Res

3


