cedility

K-Sparse Binary WE TEST CODERS
Count

Another month has passed and it is time to reveal how the Codility challenge codenamed Xi
can be solved. You can still give it a try, but no certificate will be awarded.

In the Xi certificate problem, we consider non-negative integers in whose binary represen-
tation any two consecutive 1s are separated by at least K Os, for some given integer K. Such
positive integers are called K-sparse. The problem is to compute the number of K-sparse
integers in a range [A..B] for given positive integers A and B (modulo 1000000 007). A and
B can be as large as 10300000,

For the sake of simplicity, from now on we will perform all the computations modulo
1000000 007 without explicit further notice. The first observation to simplify the problem is
that the number of K-sparse integers in the range [A..B] is equal to the number of K-sparse
integers smaller than B 4+ 1 minus the number of K-sparse integers smaller than A. So, the
problem reduces to finding the number of K-sparse integers smaller than a given positive
integer N. Let increase be a simple procedure to increase a binary representation of an
integer (stored in a string) by 1, and below be a function to find the number of K-sparse
integers smaller than a given positive integer. A relevant piece of code (in Python) might be
as follows:

ModP = 1000000007;

sparse_binary_count (A, B, K):
return (below(increase(B), K) - below(A, K) + ModP) % ModP

=W N

We will show how to solve this problem for K-sparse values of N. But what if N is not
K-sparse? In such a case, we can increase N to the smallest K-sparse integer larger than V.
If N is not K-sparse, it means that there are at least two consecutive 1s separated by fewer
than K 0s. We should focus on the most significant such pair of 1s, as changing the lower
bits wouldn’t produce a K-sparse number. Moreover, if we are looking for a K-sparse number
larger than N, we have to shift the more significant of the two 1s up. On the other hand,
if we do shift it up, even by one position, then all the lower bits can be reset to 0 and the
resulting number will still be larger than V. Would it be K-sparse? Not necessarily. There is
one tricky point: If the more significant of the two 1s is separated by exactly K 0s from the
next more significant 1, then, after shifting it up, the distance between these two 1s becomes
smaller than K. Therefore, we should focus on the most significant and longest sequence of
bits of the form:

1 K times 01 K times 01...1 K times 0 1 fewer than K 0s 1

© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.


http://codility.com/demo/take-sample-test/xi2012

The smallest K-sparse integer larger than N can be obtained by shifting the most significant
of these 1s one position up and setting all lower bits to 0. The following piece of code in
Python implements this and calls a procedure below_k_sparse, which solves the problem
for K-sparse values of N:

1 def below (N, K):

2 N ="'0" + N

3 1 = len(N)

4 c = K+1

5 i =20

6 3 =0

7 while (i < 1):

8 if (N[i] == "1"):
9 if (¢ < K):

10 break

11 else:

12 if (¢ > K):
13 =1
14 c =20

15 else:

16 c +=1

17 i +=1

18 if (1 < 1)

-
©

N = N[:3=-1] + 717 + 70" % (1-3)
return below_k_sparse (N, K)

N
o

So, what is the number of K-sparse numbers smaller than a given K-sparse number
N7 For the sake of simplicity, let us include zero among K-sparse numbers. Let the most
significant 1 in a binary representation of N be at position representing 27. In other words,
21 < N < 2+, K-sparse numbers smaller than N can be divided into two groups:

1. K-sparse numbers smaller than 27: let us denote the number of such K-sparse numbers
by F[I];

2. K-sparse numbers smaller than N but not smaller than 27: the binary representations
of such numbers contain 1 at the position representing 2!/ and 0s at the positions
representing 2/71, 2172 2I=K. the remaining bits represent a number smaller than
N —2L

Hence, the result is a sum of values of F[I] for values of I in which the binary representa-
tion of N contains 1 at the position representing 2!. The following code in Python implements
this:

res = (res + F[1-1-1]) % ModP
return res

1 def below_k_sparse (N, K):
2 1 = len(N)

3 res = 0

4 for i in xrange(l):

5 if (N[i] == "1"):
6

7

What remains is to calculate the values of F[I]. Again, K-sparse numbers smaller than
2! can be divided into two groups:

1. numbers smaller than 2/=': there are F[I — 1] of them; and

2. numbers smaller than 2/ but not smaller than 2/~1: their binary representations contain
1 at the position representing 2/ =1 and Os at the positions representing 2/=2 2/=3 . 2/-K-1,
hence, there are F[I — K — 1] of them.



From this, we obtain the following recursive equation defining F'[I]:

FlI] = FI-1)+F[I-K-1] forI>0
F[I] =1 forl <0

This leads to the following code for precomputing values of F[I], which can be added to the
procedure sparse_binary_count:

1 F = [1]1*x(len(B)+2)

2 for i in xrange (1, len(F)):

3 if (1 > K):

4 F[i] = (F[i-1] + F[i-K-1]) % ModP
5 else:

6 F[i] = (F[i-1] + 1) % ModP

7

8 def below_k_sparse (N, K):

9 1 = len(N)

10 res = 0

11 for i in xrange(1l):

12 if (N[i] == "17):

13 res = (res + F[1l-1-i]) % ModP
14 return res

What remains is to calculate the values of F[I]. Again, K-sparse numbers smaller than
2! can be divided into two groups:

1. numbers smaller than 2/=!: there are F[I — 1] of them; and

2. numbers smaller than 2/ but not smaller than 2/~1: their binary representations contain
1 at the position representing 2/ ~! and 0s at the positions representing 2/=2,21=3 . 2l—-K-1.
hence, there are F[I — K — 1] of them.

From this, we obtain the following recursive equation defining F'[I]:

FlI] = FI-1+F[I-K~-1] forI>0
FlIl = 1 for I <0

This leads to the following code for precomputing values of F[I], which can be added to the
procedure sparse_binary_count:

1 F = [1]1*(len(B)+2)

2 for i in xrange(l,len(F)):

3 if (1 > K):

4 F[i] = (F[i-1] + F[i-K-1]) % ModP
5 else:

6 F[i] = (F[i-1] + 1) % ModP

Note that, for K = 2, F[I] are Fibonacci numbers.
Each step of the computation can be performed in a length of time proportional to the
length of the processed string. Strings representing numbers A and B are of lengths O(log A)

and O(log B) respectively. Hence, the overall time complexity of the presented solution is
O(max(log A,log B)) = O(log(A + B)) = O(log B) time.



