
Double Median

Another month has passed and it is time to reveal how the Codility challenge codenamed Nu
can be solved. You can still give it a try, but no certificate will be awarded.

In the Nu certificate problem, two arrays, A and B, of integers sorted in ascending order,
are given. Additionally, a sequence of queries is given in the following form: given two con-
tinuous segments, one in the first array and another in the second, find a median of numbers
in both segments. The result that should be computed is a median of answers to the given
queries.

The main question is: how quickly can a median of a sequence of numbers be computed?
For an arbitrary sequence of N numbers, the median can trivially be computed in O(N log N)
time. Simply, one can sort the sequence and pick the middle element. (Note that all the
medians in this problem are taken from odd numbers of elements.)

More sophisticated algorithms, e.g. the algorithm of the five(s), can find the median in
O(N) time. (The name of the algorithm relates to two sources: one is that the given sequence is
divided into groups of five elements; another is that the algorithm has five authors.) However,
these algorithms don’t make use of the fact that the input sequences are sorted. Using them,
one can solve the problem in O(K(N + M)) time, where K is the number of queries and N
and M are the lengths of the given sorted sequences.

We will show how to find the median of the union of two sorted sequences in a logarithmic
time. It will allow us to answer all the queries in O(K log(N +M)) time. Then, the result can
be calculated even using sorting, which yields O(K log(K + N + M)) total time complexity.
Let us assume that median(p, q, r, s) is a function returning a median of A[p..q] and
B[r..s], where A and B are the given sorted arrays. A solution coded in Python might be as
follows:

1 def double_median(A,B,P,Q,R,S):
2 n = len(A)
3 m = len(B)
4 k = len(P)
5 medx = [0]*k
6 for i in xrange(k):
7 medx[i] = median(P[i], Q[i], R[i], S[i])
8 medx.sort()
9 return medx[k // 2]

We still have to implement the function median. Let us define x = q−p+1, y = s−r+1,
z = (|x− y| − 1)/2; note that |x− y| is odd. First, we will simplify the problem and reduce
it to a case where x = y ± 1. We can either drop the top z elements and bottom z elements
from the larger of the ranges, p..q and r..s, or instantly point to the result. If med(p, q,

c© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1

http://codility.com/demo/take-sample-test/nu2011
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Selection_algorithm#Linear_general_selection_algorithm_-_Median_of_Medians_algorithm

r, s) is a function returning a median of A[p..q] and B[r..s] for q − p = r − s± 1, then the
implementation of function median can be as follows:

1 def median(p, q, r, s):
2 x = q-p+1
3 y = s-r+1
4 z = abs(x-y) // 2
5 if x > y:
6 if A[p+z] >= B[s]:
7 return A[p+z]
8 elif A[q-z] <= B[r]:
9 return A[q-z]

10 else:
11 return med(p+z, q-z, r, s)
12 else:
13 if B[r+z] >= A[q]:
14 return B[r+z]
15 elif B[s-z] <= A[p]:
16 return B[s-z]
17 else:
18 return med(p, q, r+z, s-z)

Now, we have to implement function med. We will do it using bisection. The key observa-
tion is that if A[p+d] ¬ B[s−d], then we can drop the bottom d elements and top d elements
by narrowing to the ranges p + d..q and r..s− d. Similarly, if A[q− d] ­ B[r + d], then we can
narrow to the ranges p..q− d and r + d..s. Moreover, if p + d ¬ q− d and r + d ¬ s− d, then
A[p + d] ¬ A[q − d] and B[r + d] ¬ B[s− d]. Hence:

• either A[p + d] ¬ B[s− d] and we can narrow to the ranges p + d..q and r..s− d;

• or A[q − d] ­ A[p + d] > B[s− d] ­ B[r + d] and we can narrow to the ranges p..q − d
and r + d..s.

For x + y > 5 we can use bisection, taking d = b(x + y)/4c. For smaller values of x + y, we
can simply sort and pick the middle element.

1 def med(p, q, r, s):
2 x = q-p+1
3 y = s-r+1
4 if x + y < 5:
5 medi = A[p:q+1]+B[r:s+1]
6 medi.sort()
7 return medi[(x+y)//2]
8 else:
9 d = (x+y) // 4

10 if A[p+d] < B[s-d]:
11 return med(p+d, q, r, s-d)
12 else:
13 return med(p, q-d, r+d, s)

2

