
Cutting the Cake

Here we show how the Codility Challenge codenamed Silicium-2014 can be solved. You can
still give it a try, but no certificate will be granted. The problem asks you to find the K-th
piece of a cake in terms of size.

Slow solution O(N 2 log N)
The simplest solution is to calculate the area of each piece of the cake separately. After that,
it is sufficient to sort all the areas and to choose K-th from them.

1: Slow solution — O(N2 log N).

1 # calculate the lengths of the pieces
2 def calculateLengths(X, Y, A, B):
3 N = len(A)
4 width = [0] * (N + 1)
5 width[0] = A[0]
6 for i in xrange(1, N):
7 width[i] = A[i] - A[i - 1]
8 width[N] = X - A[N - 1]
9 height = [0] * (N + 1)

10 height[0] = B[0]
11 for i in xrange(1, N):
12 height[i] = B[i] - B[i - 1]
13 height[N] = Y - B[N - 1]
14 return width, height
15

16 def slowSolution(X, Y, K, A, B):
17 N = len(A) + 1
18 width, height = calculateLengths(X, Y, A, B)
19 pieces = [0] * (N * N)
20 # calculate the areas
21 for i in xrange(N):
22 for j in xrange(N):
23 pieces[i + (j - 1) * N] = width[i] * height[j]
24 # sort areas and choose K-th
25 pieces.sort()
26 return pieces[N * N - K]

The time complexity of the above algorithm is O(N2 log N) due to the sorting time of all the
elements. This approach is far from optimal.

c© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1

http://codility.com/train


Golden solution O(N log(N + X + Y ))
The size of the piece of cake we are looking for can be found by a binary search of its area. The
area is between 1 and the size of the biggest piece of the cake. In each iteration of the binary
search, the interval is halved. We select the middle element s of the interval and, depending
on the number of pieces that are greater than or equal to s, choose the left or right interval
for the next iteration.

2: Golden solution — O(N log(N + X + Y )).

1 def goldenSolution(X, Y, K, A, B):
2 N = len(A)
3 width, height = calculateLengths(X, Y, A, B)
4 width.sort()
5 height.sort()
6 beg = 1
7 end = width[N] * height[N]
8 result = 0
9 # binary search by the area

10 while beg <= end:
11 mid = (beg + end) // 2
12 if greater_eq(X, Y, mid, width, height) >= K:
13 beg = mid + 1
14 result = mid
15 else:
16 end = mid - 1
17 return result

As the interval is halved in every iteration, the number of all divisions can be estimated by
O(log(X +Y )). All that remains is the question of how to calculate the number of pieces that
are greater than or equal to s.

Counting pieces of the cake

The widths and heights of the pieces are sorted into non-decreasing order. We calculate the
number of pieces starting from the smallest widths. Let’s assume that we know the number of
pieces greater than or equal to s for some fixed width. How can this number change for larger
width? It can only increase, because all heights stay the same and the width gets larger.

3: The number of cakes — O(N).

1 def greater_eq(X, Y, mid, width, height):
2 N = len(width)
3 result = 0
4 j = N - 1
5 for i in xrange(N):
6 while j >= 0 and width[i] * height[j] >= mid:
7 j -= 1
8 result += N - 1 - j
9 return result

The time complexity of the above function is linear due to the amortized cost. The variable
j cannot be decreased more than N times, and it is decreased by 1 in every iteration of the
while loop.

The time complexity of the whole algorithm is O(N log(N + X + Y )), due to the binary
search of the result and sorting all the widths and heights.

2


