

Cutting the Cake

Here we show how the Codility Challenge codenamed Silicium-2014 can be solved. You can still give it a try, but no certificate will be granted. The problem asks you to find the K-th piece of a cake in terms of size.

Slow solution $O(N^2 \log N)$

The simplest solution is to calculate the area of each piece of the cake separately. After that, it is sufficient to sort all the areas and to choose K-th from them.

```
1: Slow solution — O(N^2 \log N).
   # calculate the lengths of the pieces
1
   def calculateLengths(X, Y, A, B):
2
       N = len(A)
3
       width = [0] * (N + 1)
4
       width[0] = A[0]
\mathbf{5}
       for i in xrange(1, N):
6
           width[i] = A[i] - A[i - 1]
7
       width[N] = X - A[N - 1]
8
       height = [0] * (N + 1)
9
       height[0] = B[0]
10
       for i in xrange(1, N):
11
           height[i] = B[i] - B[i - 1]
12
       height[N] = Y - B[N - 1]
13
       return width, height
14
15
   def slowSolution(X, Y, K, A, B):
16
       N = len(A) + 1
17
       width, height = calculateLengths(X, Y, A, B)
18
       pieces = [0] * (N * N)
19
       # calculate the areas
20
       for i in xrange(N):
21
            for j in xrange(N):
22
                pieces[i + (j - 1) * N] = width[i] * height[j]
23
       # sort areas and choose K-th
24
       pieces.sort()
25
       return pieces[N * N - K]
26
```

The time complexity of the above algorithm is $O(N^2 \log N)$ due to the sorting time of all the elements. This approach is far from optimal.

 $[\]textcircled{C}$ Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication prohibited.

Golden solution $O(N \log(N + X + Y))$

The size of the piece of cake we are looking for can be found by a binary search of its area. The area is between 1 and the size of the biggest piece of the cake. In each iteration of the binary search, the interval is halved. We select the middle element s of the interval and, depending on the number of pieces that are greater than or equal to s, choose the left or right interval for the next iteration.

```
2: Golden solution — O(N \log(N + X + Y)).
   def goldenSolution(X, Y, K, A, B):
1
       N = len(A)
2
       width, height = calculateLengths(X, Y, A, B)
3
       width.sort()
4
       height.sort()
\mathbf{5}
       beg = 1
6
       end = width[N] * height[N]
7
       result = 0
8
       # binary search by the area
9
       while beg <= end:</pre>
10
            mid = (beg + end) // 2
11
            if greater_eq(X, Y, mid, width, height) >= K:
12
                 beq = mid + 1
13
                 result = mid
14
            else:
15
                 end = mid - 1
16
17
       return result
```

As the interval is halved in every iteration, the number of all divisions can be estimated by $O(\log(X+Y))$. All that remains is the question of how to calculate the number of pieces that are greater than or equal to s.

Counting pieces of the cake

The widths and heights of the pieces are sorted into non-decreasing order. We calculate the number of pieces starting from the smallest widths. Let's assume that we know the number of pieces greater than or equal to s for some fixed width. How can this number change for larger width? It can only increase, because all heights stay the same and the width gets larger.

```
3: The number of cakes -
                             O(N).
  def greater_eq(X, Y, mid, width, height):
1
\mathbf{2}
       N = len(width)
       result = 0
3
       j = N - 1
4
       for i in xrange(N):
5
            while j >= 0 and width[i] * height[j] >= mid:
6
                j -= 1
7
            result += N - 1 - j
8
       return result
9
```

The time complexity of the above function is linear due to the amortized cost. The variable j cannot be decreased more than N times, and it is decreased by 1 in every iteration of the while loop.

The time complexity of the whole algorithm is $O(N \log(N + X + Y))$, due to the binary search of the result and sorting all the widths and heights.