
Chapter 1

Iterations

In programming, iterating means repeating some part of your program. This lesson presents
basic programming constructions that allow iterations to be performed: “for” and “while”
loops.

1.1. For loops
If you want to repeat some operations a given number of times, or repeat them for each
element in some collection, a “for” loop is the right tool to use. Its syntax is as follows:

1.1: For loop syntax

1 for some_variable in range_of_values:
2 loop_body

The for loop repeats loop_body for each value in turn from the range_of_values, with
the current value assigned to some_variable. In its simplest form, the range of values can
be a range of integers, denoted by: range(lowest, highest + 1). For example, the
following loop prints every integer from 0 to 99:

1 for i in range(0, 100):
2 print i

Looping over a range of integers starting from 0 is a very common operation. (This is
mainly because arrays and Python lists are indexed by integers starting from 0; see Chapter 2
Arrays for more details.) When specifying the range of integers, if the starting value equals
zero then you can simply skip it. For example, the following loop produces exactly the same
result as the previous one:

1 for i in range(100):
2 print i

Example: We are given some positive integer n. Let’s compute the factorial of n and assign
it to the variable factorial. The factorial of n is n! = 1 · 2 · . . . · n. We can obtain it by
starting with 1 and multiplying it by all the integers from 1 to n.

1 factorial = 1
2 for i in range (1, n + 1):
3 factorial *= i

c� Copyright 2020 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1



Example: Let’s print a triangle made of asterisks (‘*’) separated by spaces. The triangle
should consist of n rows, where n is a given positive integer, and consecutive rows should
contain 1, 2, . . . , n asterisks. For example, for n = 4 the triangle should appear as follows:

*
* *
* * *
* * * *

We need to use two loops, one inside the other: the outer loop should print one row in
each step and the inner loop should print one asterisk in each step2.

1 for i in range(1, n + 1):
2 for j in range(i):
3 print ’*’,
4 print

The range function can also accept one more argument specifying the step with which the
iterated values progress. More formally, range(start, stop, step) is a sequence of
values beginning with start, whose every consecutive value is increased by step, and that
contains only values smaller than stop (for positive step; or greater than stop for negative
step). For example, range(10, 0, -1) represents sequence 10, 9, 8, . . . , 1. Note that we
cannot omit start when we specify step.

Example: Let’s print a triangle made of asterisks (‘*’) separated by spaces and consisting
of n rows again, but this time upside down, and make it symmetrical. Consecutive rows should
contain 2n − 1, 2n − 3, . . . , 3, 1 asterisks and should be indented by 0, 2, 4, . . . , 2(n − 1)
spaces. For example, for n = 4 the triangle should appear as follows:

* * * * * * *
* * * * *
* * *
*

The triangle should have n rows, where n is some given positive integer.
This time we will use three loops: one outer and two inner loops. The outer loop in

each step prints one row of the triangle. The first inner loop is responsible for printing the
indentations, and the second for printing the asterisks.

1 for i in range(n, 0, -1):
2 for j in range(n - i):
3 print ’ ’,
4 for j in range(2 * i - 1):
5 print ’*’,
6 print

1.2. While loops
The number of steps in a for loop, and the values over which we loop, are fixed before the
loop starts. What if the number of steps is not known in advance, or the values over which

2There is a clever idiom in Python denoting a string repeated a number of times. For example, ’*’ * n
denotes a string comprising n asterisks. But to make our examples more instructive, we will not use this idiom
here. Instead we will use the print statement ended with a comma. It doesn’t print the newline character,
but follows the output with a single space.

2



we loop are generated one by one, and are thus not known in advance either? In such a case,
we have to use a different kind of loop, called a “while” loop. The syntax of the while loop is
as follows:

1.2: While loop syntax

1 while some_condition:
2 loop_body

Before each step of the loop, some_condition is computed. As long as its value is true3,
the body of the loop is executed. Once it becomes false, we exit the loop without executing
loop_body.

Example: Given a positive integer n, how can we count the number of digits in its decimal
representation? One way to do it is convert the integer into a string and count the characters.
Here, though, we will use only arithmetical operations instead. We can simply keep dividing
the number by ten and count how many steps are needed to obtain 0.

1 result = 0
2 while n > 0:
3 n = n // 10
4 result += 1

Example: The Fibonacci numbers4 form a sequence of integers defined recursively in the
following way. The first two numbers in the Fibonacci sequence are 0 and 1, and each subse-
quent number is the sum of the previous two. The first few elements in this sequence are: 0,
1, 1, 2, 3, 5, 8, 13. Let’s write a program that prints all the Fibonacci numbers, not exceeding
a given integer n.

We can keep generating and printing consecutive Fibonacci numbers until we exceed n.
In each step it’s enough to store only two consecutive Fibonacci numbers.

1 a = 0
2 b = 1
3 while a <= n:
4 print a
5 c = a + b
6 a = b
7 b = c

1.3. Looping over collections of values5

We have seen how to loop over integers. Is it possible to loop over values of other types?
Yes: using a “for” loop, we can loop over values stored in virtually any kind of container.
The range function constructs a list containing all the values over which we should loop.
However, we can pass a list constructed in any other way.

3Note that the condition can yield any value, not only True or False. A number of values other than
False are interpreted as false, e.g. None, 0, [] (empty list) and ’’ (empty string).

4You can read more about the Fibonacci numbers in Chapter 13.
5If you are not familiar with various built-in data structures such as lists, sets and dictionaries, you can

safely skip this section. Looping over lists of values will be explained in Chapter 2.

3



Example: The following program:
1 days = [’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’,
2 ’Friday’, ’Saturday’, ’Sunday’]
3 for day in days:
4 print day

prints all the days of the week, one per line.
When we use the range function, we first build a list of all the integers over which we will

loop; then we start looping. This is memory-consuming when looping over a long sequence. In
such cases, it’s advisable to use – instead of range – an equivalent function called xrange.
This returns exactly the same sequence of integers, but instead of storing them in a list, it
returns an object that generates them on the fly.

If you loop over a set of values, the body of the loop is executed exactly once for every
value in the set; however, the order in which the values are processed is arbitrary.

Example: If we modify the above program slightly, as follows:
1 days = set([’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’,
2 ’Friday’, ’Saturday’, ’Sunday’])
3 for day in days:
4 print day

we might get the days output in some strange order, e.g.:

Monday
Tuesday
Friday
Wednesday
Thursday
Sunday
Saturday

Looping over a dictionary means looping over its set of keys. Again, the order in which
the keys are processed is arbitrary.

Example: The following program:
1 days = {’mon’: ’Monday’, ’tue’: ’Tuesday’, ’wed’: ’Wednesday’,
2 ’thu’: ’Thursday’, ’fri’: ’Friday’, ’sat’: ’Saturday’,
3 ’sun’: ’Sunday’}
4 for day in days:
5 print day, ’stands for’, days[day]

might output e.g.:

wed stands for Wednesday
sun stands for Sunday
fri stands for Friday
tue stands for Tuesday
mon stands for Monday
thu stands for Thursday
sat stands for Saturday

Every lesson will provide you with programming tasks at http://codility.com/programmers.

4


