Codility

Chapter 9

Maximum slice problem

Let's define a problem relating to maximum slices. You are given a sequence of n integers $a_{0}, a_{1}, \ldots, a_{n-1}$ and the task is to find the slice with the largest sum. More precisely, we are looking for two indices p, q such that the total $a_{p}+a_{p+1}+\ldots+a_{q}$ is maximal. We assume that the slice can be empty and its sum equals 0 .

$$
\begin{array}{l|l|l|l|l|l|l|}
\hline a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
\hline 5 & -7 & 3 & 5 & -2 & 4 & -1 \\
\hline
\end{array}
$$

In the picture, the slice with the largest sum is highlighted in gray. The sum of this slice equals 10 and there is no slice with a larger sum. Notice that the slice we are looking for may contain negative integers, as shown above.

9.1. Solution with $O\left(n^{3}\right)$ time complexity

The simplest approach is to analyze all the slices and choose the one with the largest sum.

```
9.1: Maximal slice - O(n3).
def slow_max_slice(A):
    n = len(A)
    result = 0
    for }\textrm{p}\mathrm{ in xrange(n):
        for q in xrange (p, n):
            sum = 0
            for i in xrange(p,q + 1):
                sum += A[i]
            result = max(result, sum)
    return result
```

Analyzing all possible slices requires $O\left(n^{2}\right)$ time complexity, and for each of them we compute the total in $O(n)$ time complexity. It is the most straightforward solution, however it is far from optimal.

[^0]
9.2. Solution with $O\left(n^{2}\right)$ time complexity

We can easily improve our last solution. Notice that the prefix sum allows the sum of any slice to be computed in a constant time. With this approach, the time complexity of the whole algorithm reduces to $O\left(n^{2}\right)$. We assume that pref is an array of prefix sums $\left(\right.$ pref $_{i}=$ $\left.a_{0}+a_{1}+\ldots+a_{i-1}\right)$.

```
9.2: Maximal slice - O( n
    def quadratic_max_slice(A, pref):
        n = len(A), result = 0
        for }p\mathrm{ in xrange(n):
            for q in xrange (p, n):
            sum = pref[q + 1] - pref[p]
            result = max(result, sum)
    return result
```

We can also solve this problem without using prefix sums, within the same time complexity. Assume that we know the sum of slice (p, q), so $s=a_{p}+a_{p+1}+\ldots+a_{q}$. The sum of the slice with one more element $(p, q+1)$ equals $s+a_{q+1}$. Following this observation, there is no need to compute the sum each time from the beginning; we can use the previously calculated sum.

```
9.3: Maximal slice - O(n2).
    def quadratic_max_slice(A):
        n = len(A), result = 0
        for p in xrange(n):
        sum = 0
        for q in xrange (p, n):
            sum += A[q]
            result = max(result, sum)
    return result
```

Still these solutions are not optimal.

9.3. Solution with $O(n)$ time complexity

This problem can be solved even faster. For each position, we compute the largest sum that ends in that position. If we assume that the maximum sum of a slice ending in position i equals max_ending, then the maximum slice ending in position $i+1$ equals $\max \left(0\right.$, max_ending $\left.+a_{i+1}\right)$.

```
9.4: Maximal slice - O(n).
    def golden_max_slice(A):
        max_ending = max_slice = 0
        for a in A:
            max_ending = max(0, max_ending + a)
            max_slice = max(max_slice, max_ending)
        return max_slice
```

This time, the fastest algorithm is the one with the simplest implementation, however it is conceptually more difficult. We have used here a very popular and important technique. Based on the solution for shorter sequences we can find the solution for longer sequences.

[^1]
[^0]: © Copyright 2020 by Codility Limited. All Rights Reserved. Unauthorized copying or publication prohibited.

[^1]: Every lesson will provide you with programming tasks at http://codility.com/programmers.

