
Chapter 17

Dynamic programming

Dynamic programming is a method by which a solution is determined based on solving
successively similar but smaller problems. This technique is used in algorithmic tasks in
which the solution of a bigger problem is relatively easy to find, if we have solutions for its
sub-problems.

17.1. The Coin Changing problem
For a given set of denominations, you are asked to find the minimum number of coins with
which a given amount of money can be paid. Assume that you can use as many coins of
a particular denomination as necessary. The greedy algorithmic approach is always to select
the largest denomination not exceeding the remaining amount of money to be paid. As long
as the remaining amount is greater than zero, the process is repeated. However, this algorithm
may return a suboptimal result. For instance, for an amount of 6 and coins of values 1, 3, 4,
we get 6 = 4 + 1 + 1, but the optimal solution here is 6 = 3 + 3.

A dynamic algorithm finds solutions to this problem for all amounts not exceeding the
given amount, and for increasing sets of denominations. For the example data, it would
consider all the amounts from 0 to 6, and the following sets of denominations: ∅, {1}, {1, 3}
and {1, 3, 4}. Let dp[i, j] be the minimum number of coins needed to pay the amount j if we
use the set containing the i smallest denominations. The number of coins needed must satisfy
the following rules:

• no coins are needed to pay a zero amount: dp[i, 0] = 0 (for all i);

• if there are no denominations and the amount is positive, there is no solution, so for
convenience the result can be infinite in this case: dp[0, j] = ∞ (for all j > 0);

• if the amount to be paid is smaller than the highest denomination ci, this denomination
can be discarded: dp[i, j] = dp[i − 1, j] (for all i > 0 and all j such that ci > j);

• otherwise, we should consider two options and choose the one requiring fewer coins:
either we use a coin of the highest denomination, and a smaller amount to be paid
remains, or we don’t use coins of the highest denomination (and the denomination can
thus be discarded): dp[i, j] = min(dp[i, j − ci] + 1, dp[i − 1, j]) (for all i > 0 and all j
such that ci � j).
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The following table shows all the solutions to sub-problems considered for the example data.

dp[i, j] 0 1 2 3 4 5 6
∅ 0 ∞ ∞ ∞ ∞ ∞ ∞

{1} 0 1 2 3 4 5 6
{1, 3} 0 1 2 1 2 3 2

{1, 3, 4} 0 1 2 1 1 2 2

Implementation

Consider n denominations, 0 < c0 � c1 � . . . � cn−1. The algorithm processes the respective
denominations and calculates the minimum number of coins needed to pay every amount
from 0 to k. When considering each successive denomination, we use the previously calculated
results for the smaller amounts.

17.1: The dynamic algorithm for finding change.

1 def dynamic_coin_changing(C, k):
2 n = len(C)
3 # create two-dimensional array with all zeros
4 dp = [[0] * (k + 1) for i in xrange(n + 1)]
5 dp[0] = [0] + [MAX_INT] * k
6 for i in xrange(1, n + 1):
7 for j in xrange(C[i - 1]):
8 dp[i][j] = dp[i - 1][j]
9 for j in xrange(C[i - 1], k + 1):

10 dp[i][j] = min(dp[i][j - C[i - 1]] + 1, dp[i - 1][j])
11 return dp[n]

Both the time complexity and the space complexity of the above algorithm is O(n · k). In the
above implementation, memory usage can be optimized. Notice that, during the calculation
of dp, we only use the previous row, so we don’t need to remember all of the rows.

17.2: The dynamic algorithm for finding change with optimized memory.

1 def dynamic_coin_changing(C, k):
2 n = len(C)
3 dp = [0] + [MAX_INT] * k
4 for i in xrange(1, n + 1):
5 for j in xrange(C[i - 1], k + 1):
6 dp[j] = min(dp[j - C[i - 1]] + 1, dp[j])
7 return dp

The time complexity is O(n · k) and the space complexity is O(k).

17.2. Exercise

Problem: A small frog wants to get from position 0 to k (1 � k � 10 000). The frog can
jump over any one of n fixed distances s0, s1, . . . , sn−1 (1 � si � k). The goal is to count the
number of different ways in which the frog can jump to position k. To avoid overflow, it is
sufficient to return the result modulo q, where q is a given number.

We assume that two patterns of jumps are different if, in one pattern, the frog visits
a position which is not visited in the other pattern.
Solution O(n · k): The task can be solved by using dynamic programming. Let’s create an
array dp consisting of k elements, such that dp[j] will be the number of ways in which the
frog can jump to position j.
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We update consecutive cells of array dp. There is exactly one way for the frog to jump to
position 0, so dp[0] = 1. Next, consider some position j > 0.

The number of ways in which the frog can jump to position j with a final jump of si is
dp[j − si]. Thus, the number of ways in which the frog can get to position j is increased by
the number of ways of getting to position j − si, for every jump si.

0 j−s1 j−s0 j

More precisely, dp[j] is increased by the value of dp[j − si] (for all si � j) modulo q.

17.3: Solution in time complexity O(n · k) and space complexity O(k).

1 def frog(S, k, q):
2 n = len(S)
3 dp = [1] + [0] * k
4 for j in xrange(1, k + 1):
5 for i in xrange(n):
6 if S[i] <= j:
7 dp[j] = (dp[j] + dp[j - S[i]]) % q;
8 return dp[k]

The time complexity is O(n ·k) (all cells of array dp are visited for every jump) and the space
complexity is O(k).

Every lesson will provide you with programming tasks at http://codility.com/programmers.
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