
Chapter 14

Binary search algorithm

The binary search is a simple and very useful algorithm whereby many linear algorithms can
be optimized to run in logarithmic time.

14.1. Intuition
Imagine the following game. The computer selects an integer value between 1 and 16 and
our goal is to guess this number with a minimum number of questions. For each guessed
number the computer states whether the guessed number is equal to, bigger or smaller than
the number to be guessed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The iterative check of all the successive values 1, 2, . . . , 16 is linear, because with each question
the set of the candidates is reduced by one.

The goal is to ask a question that reduces the set of candidates maximally. The best
option is to choose the middle element, as doing so causes the set of candidates to be halved
each time. With this approach, we ask the logarithmic number of questions at maximum.

14.2. Implementation
In a binary search we use the information that all the elements are sorted. Let’s try to solve
the task in which we ask for the position of a value x in a sorted array a0 � a1 � . . . � an−1.
Let’s see how the number of candidates is reduced, for example for the value x = 31.

12 15 15 19 24 31 53 59 60
0 1 2 3 4 5 6 7 8

12 15 15 19 24 31 53 59 60
0 1 2 3 4 5 6 7 8

12 15 15 19 24 31 53 59 60
0 1 2 3 4 5 6 7 8

For every step of the algorithm we should remember the beginning and the end of the re-
maining slice of the array (respectively, variables beg and end). The middle element of the
slice can easily be calculated as mid = � beg+end

2 �.

c� Copyright 2020 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1



14.1: Binary search in O(log n).

1 def binarySearch(A, x):
2 n = len(A)
3 beg = 0
4 end = n - 1
5 result = -1
6 while (beg <= end):
7 mid = (beg + end) / 2
8 if (A[mid] <= x):
9 beg = mid + 1

10 result = mid
11 else:
12 end = mid - 1
13 return result

The above algorithm will find the largest element which is less than or equal to x. In sub-
sequent iterations the number of candidates is halved, so the time complexity is O(log n). It
is noteworthy that the above implementation is universal; it is enough to modify only the
condition inside the while loop.

14.3. Binary search on the result
In many tasks, we should return some integer that is both optimal and that meets certain
conditions. We can often find this number using a binary search. We guess some value and
then check whether the result should be smaller or bigger. At the start we have a certain
range in which we can find the result. After each attempt the range is halved, so the number
of questions can be estimated by O(log n).

Thus, the problem of finding the optimal value reduces to checking whether some value
is valid and optimal. The latter problem is often much simpler, and the binary search adds
only a log n factor to the overall time complexity.

14.4. Exercise

Problem: You are given n binary values x0, x1, . . . , xn−1, such that xi ∈ {0, 1}. This array
represents holes in a roof (1 is a hole). You are also given k boards of the same size. The goal
is to choose the optimal (minimal) size of the boards that allows all the holes to be covered
by boards.
Solution: The size of the boards can be found with a binary search. If size x is sufficient to
cover all the holes, then we know that sizes x+1, x+2, . . . , n are also sufficient. On the other
hand, if we know that x is not sufficient to cover all the holes, then sizes x − 1, x − 2, . . . , 1
are also insufficient.

14.2: Binary search in O(log n).

1 def boards(A, k):
2 n = len(A)
3 beg = 1
4 end = n
5 result = -1
6 while (beg <= end):
7 mid = (beg + end) / 2
8 if (check(A, mid) <= k):
9 end = mid - 1

10 result = mid

2



11 else:
12 beg = mid + 1
13 return result

There is the question of how to check whether size x is sufficient. We can go through all the
indices from the left to the right and greedily count the boards. We add a new board only if
there is a hole that is not covered by the last board.

14.3: Greedily check in O(n).

1 def check(A, k):
2 n = len(A)
3 boards = 0
4 last = -1
5 for i in xrange(n):
6 if A[i] == 1 and last < i:
7 boards += 1
8 last = i + k - 1
9 return boards

The total time complexity of such a solution is O(n log n) due to the binary search time.

Every lesson will provide you with programming tasks at http://codility.com/programmers.

3


