Chapter 13

Fibonacci numbers

The Fibonacci numbers form a sequence of integers defined recursively in the following way. The first two numbers in the Fibonacci sequence are 0 and 1, and each subsequent number is the sum of the previous two.

\[F_n = \begin{cases}
0 & \text{for } n = 0, \\
1 & \text{for } n = 1, \\
F_{n-1} + F_{n-2} & \text{for } n > 1.
\end{cases} \]

The first twelve Fibonacci numbers are:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>13</th>
<th>21</th>
<th>34</th>
<th>55</th>
<th>89</th>
</tr>
</thead>
</table>

Notice that recursive enumeration as described by the definition is very slow. The definition of \(F_n \) repeatedly refers to the previous numbers from the Fibonacci sequence.


```python
def fibonacci(n):
    if n <= 1:
        return n
    return fibonacci(n - 1) + fibonacci(n - 2)
```

The above algorithm performs \(F_n \) additions of 1, and, as the sequence grows exponentially, we get an inefficient solution.

Enumeration of the Fibonacci numbers can be done faster simply by using a basis of dynamic programming. We can calculate the values \(F_0, F_1, \ldots, F_n \) based on the previously calculated numbers (it is sufficient to remember only the last two values).

13.2: Finding Fibonacci numbers dynamically.

```python
def fibonacciDynamic(n):
    fib = [0] * (n + 2)
    fib[1] = 1
    for i in xrange(2, n + 1):
        fib[i] = fib[i - 1] + fib[i - 2]
    return fib[n]
```

The time complexity of the above algorithm is \(O(n) \).
13.1. Faster algorithms for Fibonacci numbers

Fibonacci numbers can be found in $O(\log n)$ time. However, for this purpose we have to use matrix multiplication and the following formula:

$$
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}^n = \begin{bmatrix}
F_{n+1} & F_n \\
F_n & F_{n-1}
\end{bmatrix}, \text{ for } n \geq 1.
$$

Even faster solution is possible by using the following formula:

$$
Fib_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{\sqrt{5}} \quad (13.1)
$$

These algorithms are not trivial and it will be presented in the future lessons.

13.2. Exercise

Problem: For all the given numbers $x_0, x_1, \ldots, x_{n-1}$, such that $1 \leq x_i \leq m \leq 1000000$, check whether they may be presented as the sum of two Fibonacci numbers.

Solution: Notice that only a few tens of Fibonacci numbers are smaller than the maximal m (exactly 31). We consider all the pairs. If some of them sum to $k \leq m$, then we mark index k in the array to denote that the value k can be presented as the sum of two Fibonacci numbers.

In summary, for each number x_i we can answer whether it is the sum of two Fibonacci numbers in constant time. The total time complexity is $O(n + m)$.

Every lesson will provide you with programming tasks at http://codility.com/programmers.