
Max Distance
Monotonic

Here we show how the Codility Challenge codenamed (Natrium-2014) can be solved. You can
still give it a try, but no certificate will be granted. The problem asks you to find a pair of
indices (P, Q), such that A[P ] ¬ A[Q] and the distance between P and Q is maximal, that is
the value Q− P is maximal.

Slow solution O(N 2)
The simplest solution is to check every pair (P, Q) and choose a pair, such that A[P ] ¬ A[Q],
with the maximal distance between P and Q.

1: Slow solution — O(N2).

1 def maxDistanceMonotonicSlow(A):
2 N = len(A)
3 result = 0
4 for P in xrange(N - 1):
5 for Q in xrange(P + 1, N):
6 if A[P] <= A[Q]:
7 result = max(result, Q - P)
8 return result

The time complexity of the above algorithm is O(N2), which is far from optimal.

Fast solution O(N log N)
There is an easy way to improve the running time by going through all the elements of
the array in the non-decreasing order. It suffices to sort the array remembering the original
positions of the elements, so that A[0] ¬ A[1] ¬ . . . ¬ A[N − 1].

For every element of the sorted array A (for every index Q), we will assume that this is
the second element of the pair. Then, we have to find the first element of the pair at some
index P , such that A[P ] ¬ A[Q] and the distance between the original positions is maximal.
Notice that the candidates for the first element of the pair are only elements with indices
1, 2, . . . , Q− 1. Only these elements are not greater than A[Q], and of them the best is that
with the smallest original position. The minimal original position can be updated with every
new element in a constant time.

2: Fast solution — O(N log N).

1 def maxDistanceMonotonicFast(A):

c© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1

http://codility.com/train


2 N = len(A)
3 result = 0
4 pairs = []
5 for i in xrange(N):
6 pairs.append((A[i], i))
7 pairs.sort()
8 minOriginalPos = N
9 for (a, b) in pairs:

10 minOriginalPos = min(minOriginalPos, b)
11 result = max(result, b - minOriginalPos)
12 return result

We have to sort all the elements, so the time complexity of the above algorithm is O(N log N).

Golden solution O(N)

There is an even better way of solving this task. As in the above solution, for every element
(for every index Q), we will assume that this is the second element of the pair. Next, we have
to find the first element of the pair at some index P , such that A[P ] ¬ A[Q] and the distance
between the positions is maximal.

Let’s consider which elements can be the first elements of the pair. We can create a list
of such candidates, starting with the first element of the array. The next value can only be
smaller. If this were not true, then we could use the smaller value in the earlier position and
the distance would be larger. Thus, the candidates form a decreasing sequence.

Having computed the list of all candidates for the element A[P ], we have to find, for
every index Q, the candidate (index P ) with the minimal position. If we started our search
for the candidate from the beginning every time, we would achieve a quadratic time. A better
approach would be to perform a binary search for index P in the pool of candidates. That
would produce an O(N log N) solution, as a binary search for a single element in a sorted
array works in O(log N) time.

The best approach is to iterate through all the candidates from the minimal to the max-
imal values. At the same time we iterate through the array, in reverse order (from the last
to the first element), considering the second elements A[Q]. Notice that if we find the best
candidate A[P ] ¬ A[Q], then there is no need to check candidates with higher positions in the
future, because the distance would be only smaller (as the value Q would be smaller). Simi-
larly, if we find A[Q] such that A[P ] ¬ A[Q] for the candidate A[P ], Q−P is the best possible
result to which A[P ] contributes. All other possible elements can only give shorter distances.

3: Golden solution — O(N).

1 def solution(A):
2 N = len(A)
3 # list of candidates for the first element of the pair
4 candidates = []
5 for P in xrange(N):
6 if (len(candidates) == 0 or A[P] < first(candidates[-1])):
7 candidates.append((A[P], P))
8 # finding the best distance
9 result = -1

10 for Q in xrange(N - 1, -1, -1):
11 while (len(candidates) > 0 and A[Q] >= first(candidates[-1])):
12 result = max(result, Q - second(candidates[-1]))
13 candidates.pop()
14 return result

2



The time complexity is O(N), because with each step of the while loop, the pool of candidates
decreases by one.

3


