
Grocery Store
by Peng Cao

It’s time to show you how the Codility Challenge codenamed (Hydrogenium) can be solved.
You can still give it a try, but no certificate will be granted. The problem asks for the shortest
path in a weighted graph.

Golden solution O(n2)
We need to reach a grocery store as soon as possible. We start from square 0, so it is a standard
single-source shortest path problem. We can use the famous Dijkstra’s algorithm to find the
shortest path from square 0 to every other square. Because the Dijkstra’s algorithm finds the
shortest path in terms of length, we can finish our solution as soon as we reach the first open
store. Note that the graph is undirected.

1: Golden solution — O((m + n) log n).

1 def grocery_store(A, B, C, D):
2 M = len(A)
3 N = len(D)
4 # Build the graph
5 G = [[]] * N
6 for i in xrange(M):
7 G[A[i]] = G[A[i]] + [(B[i], C[i])]
8 G[B[i]] = G[B[i]] + [(A[i], C[i])]
9 # Initialize the queue and distance table

10 dist = [-1] * N
11 Q = PriorityQueue()
12 Q.put((0, 0))
13 # Search
14 while not Q.empty():
15 (s, i) = Q.get()
16 if dist[i] == -1:
17 dist[i] = s
18 if s <= D[i]:
19 return s
20 for (j, t) in G[i]:
21 Q.put((s + t, j))
22 return -1

The total time complexity is O((m+n) log n) due to the time required for the priority queue.
We can improve above solution to O(m + n log n) if we use Fibonacci heap. The maximal
value of m equals n2 so the time complexity is O(n2 log n) or O(n2) in case of Fibonacci heap.

c© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1

http://codility.com/train
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

We can also n times look for the closest square, calculating the shortest distance to it:

2: Golden solution — O(n2).

1 def grocery_store(A, B, C, D):
2 MAX_INT = 10**9
3 M = len(A)
4 N = len(D)
5 # Build the graph
6 G = [[]] * N
7 for i in xrange(M):
8 G[A[i]] = G[A[i]] + [(B[i], C[i])]
9 G[B[i]] = G[B[i]] + [(A[i], C[i])]

10 # Initialize the distance table
11 dist = [MAX_INT] * N
12 visit = [False] * N
13 dist[0] = 0
14 # Look for minimum value
15 for k in xrange(N):
16 # Find the minimum
17 s = MAX_INT
18 for j in xrange(N):
19 if dist[j] < s and visit[j] == False:
20 s = dist[j]
21 i = j
22 visit[i] = True
23 if s <= D[i]:
24 return s
25 for (j, t) in G[i]:
26 dist[j] = min(dist[j], s + t)
27 return -1

The time complexity of above solution is O(n2).

2

