
Clocks

It’s time to show how the Codility Chalenge codenamed Li (Lithium) can be solved. You
can still give it a try, but no certificate will be granted.

The story is about round clocks. The clocks have round faces and a number of identical
hands. The goal is to rotate them so that the number of pairs of clocks that look identical is
maximum.

Brute-force solution

For every pair of clocks, we will check whether they can look identical or not. Let’s sort the
hands of each clock. After that, we can easily count the distances between consecutive hands.
Two clocks look identical if the first hands are aligned and the consecutive distances between
hands are the same. When we rotate a clock, some other hand can become the first one. So
to check whether two clocks can be rotated to look identically, we have to check every cyclic
rotation of the distances between consecutive hands.

Here is a program comparing all the pairs of clocks and checking whether they can be
rotated so that they look identically. Assume that matrix A contains distances between
consecutive hands.

1: Brute-force solution.

1 def clocks(A):
2 N = len(A)
3 M = len(A[0])
4 result = 0
5 for i in xrange(N):
6 for k in xrange(i + 1, N):
7 for l in xrange(M):
8 ok = True
9 for j in xrange(M):

10 if (A[i][j] != A[k][(j + l) % M]):
11 ok = False
12 break;
13 if ok:
14 result += 1
15 break;
16 return result

However, the above solution is inefficient. We have O(N2) pairs of clocks, and every pair is
compared in O(M2) time, so the whole algorithm may require O(N2 · M2) time.

c© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1

http://codility.com/train


Slow solution

To find a better solution, we should be able to compare two clocks faster than in O(M2)
time. There is a suitable algorithm called lexicographically minimal string rotation. For each
clock, we find its canonical rotation. If two clocks can be rotated so that look identically,
their canonical rotations should be identical. For this purpose we can choose such a rotation
of distances between consecutive hands that is minimal in the lexicographical order. Finding
the minimal rotation of a clock requires O(M) time, so the time complexity of the whole
algorithm is O(N2 · M + N · M log M).

2: Slow solution.

1 def clocks(A):
2 N = len(A)
3 M = len(A[0])
4 for i in xrange(N):
5 minimal_lexicographically_rotation(A[i])
6 result = 0
7 for i in xrange(N):
8 for k in xrange(i + 1, N):
9 ok = True

10 for j in xrange(M):
11 if (A[i][j] != A[k][j]):
12 ok = False
13 break;
14 if ok:
15 result += 1
16 return result

Optimal solution

We can find an even faster solution to this task by simply sorting the clocks in the order of
their lexicographically minimal rotations. That will cause identical clocks to be adjacent to
each other in the array. Assume that matrix A contains distances between consecutive hands.

3: Golden solution.

1 def clocks(A):
2 N = len(A)
3 for i in xrange(N):
4 minimal_lexicographically_rotation(A[i])
5 A.sort()
6 result = 0
7 pairs = 0
8 for i in xrange(1, N):
9 if (equal(A[i], A[i - 1])):

10 pairs += 1
11 result += pairs
12 else:
13 pairs = 0
14 return result

With this approach, the time complexity is O(N · M · (log M + log N)). This solution should
achieve the maximum number of points.

2

http://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation


Alternative solution
We can also solve this task in alternative way. Instead of looking for lexicographically minimal
rotations, we can find the rotation in which we get the maximal (or minimal) hash. If the
maximal hash for two clocks is the same, we claim that the two clocks look identical.

Finally, just sort the clocks by their maximal hashes and identical clocks will also be next
to each other. The time complexity is O(N · M · log M + N · log N).

3


